

Solid Carbide Taps

www.vergnano.com

VERGNANO CARBIDE TAPS

The use of carbide tools has increased significantly in the last few years. Nowadays turning, drilling and milling operations are done, for the most part, with these kind of tools. The development of carbide tools, with better wear resistance and higher toughness compared to HSS tools, has been pushed forward by the evolution of CNC machines and the request for higher cutting speeds.

More specifically, in certain tapping applications, the use of carbide is either indispensable, such as in heat-treated steels or very competitive, such as in abrasive materials.

Range

The Vergnano carbide tap range includes:

- Straight fluted taps with chamfer form C for blind and through holes, for machining abrasive materials such as grey cast iron and aluminium-silicon alloys; metric and metric fine threads (types **H**B43 and **H**B45).
- 15° spiral fluted taps for blind holes, for machining aluminium, copper, bronze and plastic materials; metric threads (type HB29);
- Straight fluted taps for blind and through holes, for machining heat-treated steel with hardness up to HRC 62; metric threads (type **H**130);
- Forming taps with radial through coolant for blind and through holes, for machining low/medium resistance steel, stainless steel, aluminium; metric threads (type HB80 NR).

A carbide twist drill has been included in the carbide product range (type **H**P900) for drilling holes in heat-treated steels with hardness up to HRC 62. The twist drill is oversize compared to normal twist drills in order to increase the toollife of the tap. The twist drill can be used to prepare the pre-hole before tapping with the **H**130 tap.

Advantages

The advantages of using carbide taps compared to standard HSS taps consist in a significant increase in tool life when machining certain types of materials and the possibility to machine hard/heat-treated steels otherwise impossible to machine with HSS tools. In particular, in the machining of abrasive materials such as cast iron or aluminium-silicon alloys (Si > 10%), the tool life can reach 8-10 times that of an equivalent tap in HSS. All taps for cast iron are equipted with through coolant channels to improve chip evacuation and to allow tapping of deep blind holes up to 3xD.

For aluminium and non-ferrous materials, **H**B29 type taps have through coolant channels for better chip evacuation and tapping of deep blind holes up to 3xD. The advantages are an increased tool life and a reduction in cycle times.

Taps for hard steels (type **H**130) are the only solution for tapping heat-treated steels up to HRC 62. Taps in HSS are not capable of machining materials with hardness above HRC 46.

Carbide forming taps (type **H**B80NR) can be used on all types of steels, including stainless steels, and on aluminium and aluminium alloys. In addition to the well-known advantage common to all forming taps of not producing chips, carbide forming taps offer a higher tool life. For example, on steel the increase in tool life compared to HSS taps can reach up to 20 times.

It is important to use carbide taps in combination with quality tapping attachments with micro-compensation and no axial or radial play. The best solution is the use of tapping attachments for synchronised tapping, such as the new Vergnano **S**incro attachment series. It is suggested to use the cutting speeds recommended in the catalogue, starting from the lowest value moving upwards.

Tap item	Material	Thread type	Hole type and depth	Application	Performance	Spindle	Through coolant	Chamfer	Shank	Cutting speed	Geometry
HB43	HM	M	3 x D	3.1-2 4.3-4		S		C (2-3)	DIN 371		
HB45	HM	MF	3 x D	3.1-2 4.3-4		S		C (2-3)	DIN 374		
HB29	HM	M	3 x D	4.1-4 5.3 9.1		S		C (2-3)	DIN 371		R 15
H130	HM	M	1,5 x D	1.7-1.8		S	_	D (4-5)			
HB80 NR	HM	M	3 x D	1.1-5 2.1-2 4.1-3 5.1-2		S		C (2-3)	DIN 371		

* See legend on page. 5

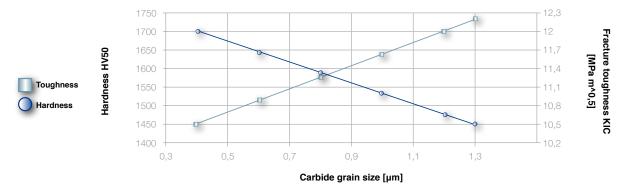
Carbide

Carbide can be considered a metallic composite material consisting of a mixture of hard carbide particles, mainly tungsten carbide (WC), in a metallic matrix of cobalt (Co). Other commonly used carbides are titanium carbide (TiC), niobiom carbide (NbC) and tantalum carbide (TaC).

The carbides, which confer hardness and compressive strength to the structure, are responsible for the wear resistance of the tool. The binding element cobalt confers toughness.

The size of the carbide particles is also important since it balances the hardness and the toughness. In general, the mechanical properties of carbides depend on composition (type and concentration of carbides), percentage of binding material, size of carbides and fabrication process.

The main differences between carbides and high speed steels are summerised in the following table:


Properties	High speed steel (HSSE/HSSK)	Carbide		
Hardness [HV30]	800 - 950	1400 – 1900		
Compressive strength [MPa]	3000 - 4000	3000 - 6000		
Bending strength [MPa]	2500 - 4500	1000 - 4000		
Modulus of elasticity [GPa]	210	460 – 650		
Density [kg/dm ³]	8 – 9	10 – 15		
Thermal conductivity [W/m/°C]	30 – 50	35 – 120		
Thermal expansion coeff. [10 ⁻⁶ /°C]	12	4,3 - 6,5		

According to the ISO 513 standard, carbides are classified in function of properties and applications.

The ISO standard defines 3 groups of carbides: P (blue colour code), M (yellow colour code), K (red colour code). Subgroups are indicated with a two-digit number which increases with increasing percentage of cobalt binder.

ISO code	Chemi	ical compo	osition	Properties			Machina- bility	Cutting parameters			Working conditions
	%Co	% carbides	Consti- tuents	Hardness	Toughness	Wear resi- stance		Cutting speed	Feed	Cutting force	
P01		\square			\land	\land		\wedge			High speed No vibrations
P10		4+2	WC TiC				Long chip- ping ferrous	4+2			High speed turning
P20			TaC NbC				materials				Turning
P30			Co = 5-17%				Nodular				Low/medium cutting speed
P40	√ +7	_	0-1770	√ +7			cast iron		\ \ +7	√ +7	Medium/high chip thickness
P50											Unfavourable conditions with vibrations
M10		\uparrow	WC		\wedge	\wedge	Difficult	\uparrow		_	Medium/high cutting speed
M20		11	TiC				materials				Medium cutting speed
M30			Co = 6-15%				Stainless steel				Medium chip thickness
M40	+			+					+	+	Unfavourable conditions with vibrations
K01						\uparrow	Short	\wedge			Finish turning and milling
K10			WC				chipping non ferrous materials				Turning, milling, drilling, reaming and tapping
K20			Co =				Cast iron				Tapping
K30 K40		_	4-15%				Plastic materials	_		\bigvee^+	Turning and milling with unfavourable conditions.

As the following graph shows at constant carbide concentration, the hardness increases with decreasing carbide grain size.

Vergnano carbide taps are produced in K grade carbide. The carbide grain size is "ultra-fine" (UF) which guarantees excellent hardness and toughness.

ARTICLE LEGEND:

THROUG					Material
	GH COOLANT				
IKZ IKZ-R	Axial hole Radial holes				Types of hole
	ATION				
LUBRIC	ATION				
E	Emulsion			Cha	amfer form
O MQL	Oil Minimum quantity I	ubricatio	nc		DIN 2197
S	Dry	abrioatio		Form D	4 - 5 threads
				Form C	2 - 3 threads
TAP MAT	TERIAL				
нм	Solid carbide				
HB43	Product code			Ch	amfer form
• 15 ÷ 2	ldeal tap / cutting	n enaad	[m/min]	M	6H
• 10 ÷ 2		y speeu	[iiwiimi]		6HX
□ 15 ÷ 2	0 Suitable tap / cu	tting spe	eed [m/min]	MF	6HX
• 40 - f		a on o -	[m/min] food rate [mm/rov]		Coolant
• -+0 - 1	ideai driii / cuttin	y speed	I [m/min] - feed rate [mm/rev]		Range
	Only for blind ho	les			
	Matarial	Oracia	Description		Coatings
	Material	Group	Description	UTS [N/m	
		1.1 1.2	Mild / magnetic steel Construction steel, case hardening steel	200-40	
		1.2	Carbon steel	350-70	
		1.3	Alloyed steel / tempered steel	500-85	
1.Steel		1.5	Alloyed steel / tempered steel	850-120	
		1.6	Alloyed steel / high strength steel	1200-14	
		1.7	Alloyed steel, Hardness HRC 44-55	-	O, MQL
		1.8	Alloyed steel, Hardness HRC 56-62	-	O, MQL
		2.1	Ferritic / automatic	< 850	O, MQL
2.Stainl	ess steel	2.2	Austenitic	< 850	O, MQL
		2.3	Ferritic + austenitic, martensitic, precipitation hardening	< 1000	O, MQL
3.Cast i	iron	3.1	Grey cast iron	< 1000	O, MQL, S
3.Gast I		3.2	Nodular cast iron, malleable cast iron, tempered cast iron	< 1000	E, O, MQL
		4.1	Pure aluminium	< 300	E, O, MQL
4.Alumi		4.2	Aluminium wrought and die cast alloys with Si<0,5% (long chipping)	< 500	E, O, MQL
Alumi	nium alloys	4.3	Aluminium wrought and die cast alloys with Si<10% (mean chipping)	< 500	E, O, MQL
		4.4	Aluminium die cast alloys with Si>10% (short chipping)	< 600	E, O, MQL
5.Copp		5.1	Pure copper	250-35	
	er Alloys	5.2 5.3	Copper alloys (long chipping), soft brass	< 700	E, O, MQL
Brass Bronz		Copper alloys (short chipping), hard brass	< 700	E, O, MQL	
		5.4 6.1	High strength bronze Pure magnesium, magnesium alloys	700-150	
6.Magn Magn	iesium iesium alloys	6.2	High strength magnesium alloys	240-40	
7.Titani		7.1	Pure titanium	400-60	
	um alloys	7.2	Titanium alloys	600-100	
8.Nicke	,	8.1	Pure nickel	400-60	
	alloys	8.2	Nickel alloys	600-100	
		9.1	Thermoplastic	000 100	O, MQL
	c materials				

HM	НМ	HM	HM	НМ	НМ	HM	HM	HM	HM
						A CONTRACTOR OF A CONTRACTOR O			Contraction
С	С	С	С	С	С	D	D	С	-
						H130	H130		
HB43	HB43			HB29	HB29			HB80NR	HP900
		HB45	HB45						
IKZ	IKZ	IKZ	IKZ	IKZ	IKZ	-	-	IKZ-R	-
M3-M10	M3-M10	M12X1,5 M16X1,5	M12X1,5 M16X1,5	M3-M10	M3-M10	M3-M12	M3-M12	M3-M10	2,6-10,4
Bright	TiAIN	Bright	TiAIN	Bright	TiCN	Bright	TiCN	TiCN	TiAIN
									*Vc-f
								• 35 ÷ 50	
								• 35 ÷ 50	
								• 30 ÷ 45	
								• 25 ÷ 40	
								• 15 ÷ 30	10.55
						□2÷5	□5÷10		• 40-f1
						• 2 ÷ 3	• 3 ÷ 6		• 30-f2
						•1÷2	• 2 ÷ 4	• 10 ÷ 25	• 30-f2
								• 10 ÷ 25 • 10 ÷ 25	
								• 10 ÷ 25	
• 15 ÷ 40	• 40 ÷ 80	• 15 ÷ 40	• 40 ÷ 80	□ 15 ÷ 40	□ 40 ÷ 80				
• 10 ÷ 10	• 15 ÷ 40	• 10 ÷ 20	• 15 ÷ 40	□ 10 ÷ 20	□ 15 ÷ 40				
				• 15 ÷ 30	• 25 ÷ 50			• 40 ÷ 50	
				• 15 ÷ 30	• 25 ÷ 50			• 40 ÷ 50	
• 20 ÷ 30	• 30 ÷ 50	• 20 ÷ 30	• 30 ÷ 50	• 20 ÷ 30	• 30 ÷ 50			• 40 ÷ 50	
• 15 ÷ 20	• 25 ÷ 40	• 15 ÷ 20	• 25 ÷ 40	• 15 ÷ 20	• 25 ÷ 40				
								• 15 ÷ 40	
								• 15 ÷ 30	
□ 20 ÷ 25	□ 30 ÷ 40	□20÷25	□ 30 ÷ 40	• 20 ÷ 25	• 30 ÷ 40				
				• 5 ÷ 10	• 10 · 15				
□ 10 ÷ 12	□ 15 ÷ 20	□ 10 ÷ 12	□ 15 ÷ 20	• 5 ÷ 10	• 10 ÷ 15				
10 - 12	115-20	310 - 12	110÷20						

ICONS D	ESCRIPTION
HM	Material: solid carbide
M	ISO Metric Coarse Thread
MF	ISO Metric Fine Thread
1.1-5 2.1-2 4.1-3 5.2	Application range: mate- rials groups
DIN 371	Shank type: DIN 371
DIN 374	Shank type: DIN 374
	Shank type: Vergnano standard
	Tap with straight flutes
R 15	Spiral tap with 15° right hand spiral
	Forming tap with oil grooves
	Through coolant tap with internal axial hole
	Through coolant tap for blind holes with in- ternal axial hole
	Through coolant for- ming tap with internal radial holes
	Hole type and depth: through up to $3 \times d_1$
3 x D	Hole type and depth: blind up to $3 \times d_1$
1,5 x D	Hole type and depth: through up to 1,5 x d ₁
	High tool life
S	Tap suitable for rigid tapping attachment (synchronised)

	suitable		
tapp	oing att	ach	ment
(synd	chronised)	

Chamfer form D: 4 - 5 threads

C (2-3) Chamfer form C: 2 - 3 threads

D (4-5)

*Feed rate for drill HP900 [mm/rev]

f2

0,025

0,032

0,040

0,040

0,055

0,070

0,090

f1

0,032

0,040

0,050

0,050

0,070

0,090

0,110

Diameter

2,6 3,4

4,3

5,1

6,9

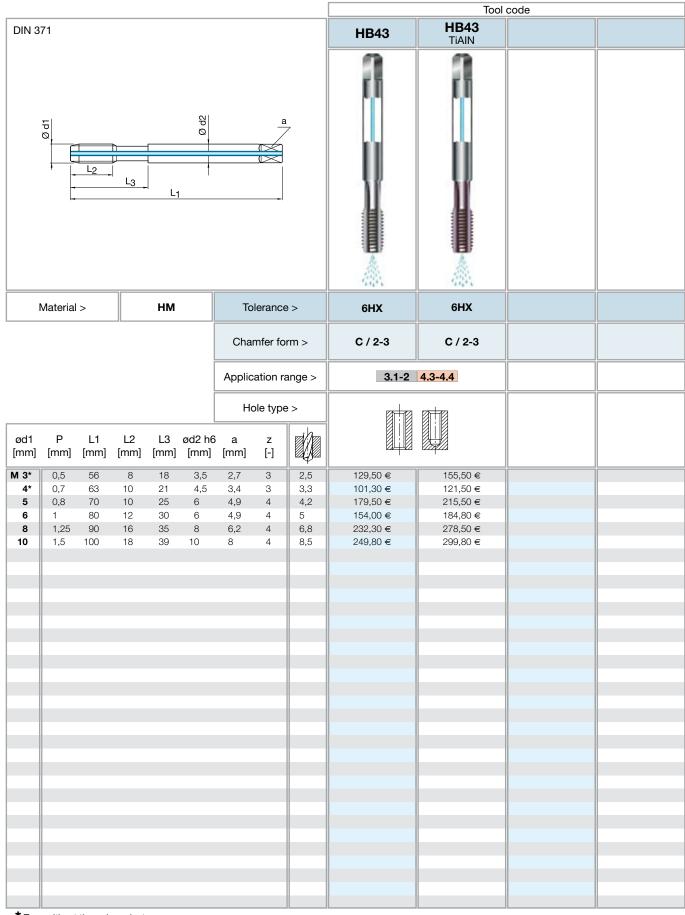
8,6

10,4

High recommended cut-ting speed

N [rev/min] -	Cutting speed [m/min] x 1000
	3,14 x d, [mm]

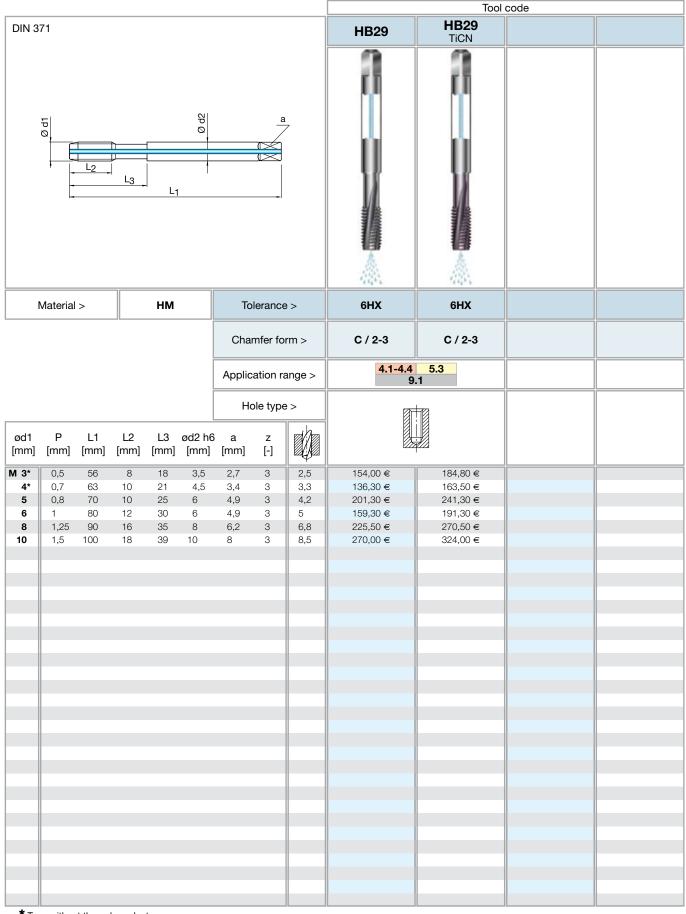
f [mm/min] = f [mm/rev] x N [rev/min]



MACHINE TAPS FOR CAST IRON - Straight flutes - Internal axial coolant

For blind and through holes - Solid carbide

ISO Metric coarse thread - DIN 13



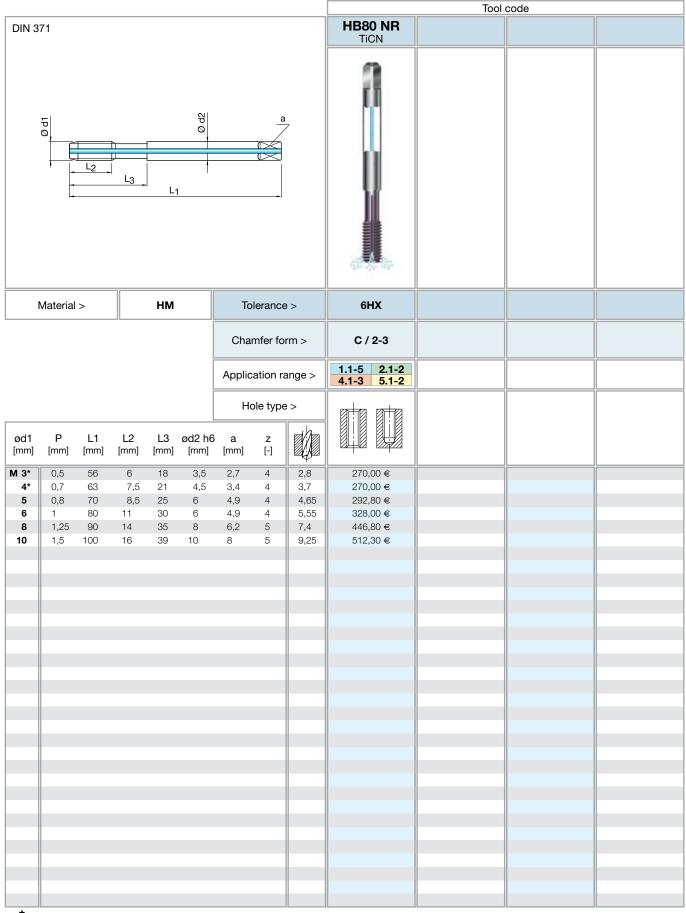
* Taps without through coolant

MACHINE TAPS - Spiral flutes - Internal axial coolant

For blind holes - Solid carbide

ISO Metric coarse thread - DIN 13

MACHINE TAPS - Straight flutes


For blind and through holes - for alloyed steels up to HRC 62 - Solid carbide ISO Metric coarse thread - DIN 13

	ietric c									Tool	code	
Vergn	ano sta	ndard							H130	H130 TiCN		
								7				
	Material	>		НМ		То	lerance	>	6Н	6Н		
						Char	nfer foi	rm >	D / 4-5	D / 4-5		
						Application range >			1.7	-1.8		
Hole type						ata						
ød1 [mm]	P [mm]	L1 [mm]	L2 [mm]	L3 [mm]	ød2 h6 [mm]	a [mm]	z [-]					
M 3 4 5 6 8 10 12	0,5 0,7 0,8 1 1,25 1,5 1,75	56 63 70 80 90 100 110	12 14 17 20 20 24 28	17 19 22 - - - -	3,5 4,5 6 8 10 12	2,7 3,4 4,9 4,9 6,2 8 9	3 4 4 5 5 5 5	2,6 3,4 4,3 5,1 6,9 8,6 10,4	186,80 € 177,80 € 204,80 € 247,50 € 292,30 € 364,30 € 407,00 €	224,00 € 213,30 € 245,50 € 296,80 € 350,80 € 437,30 € 488,50 €		
						IT I	IS RECO	OMMEND	ERS ARE OVERSIZED ED TO USE TWIST I EEL TYPE HP900 (PAG	DRILL		

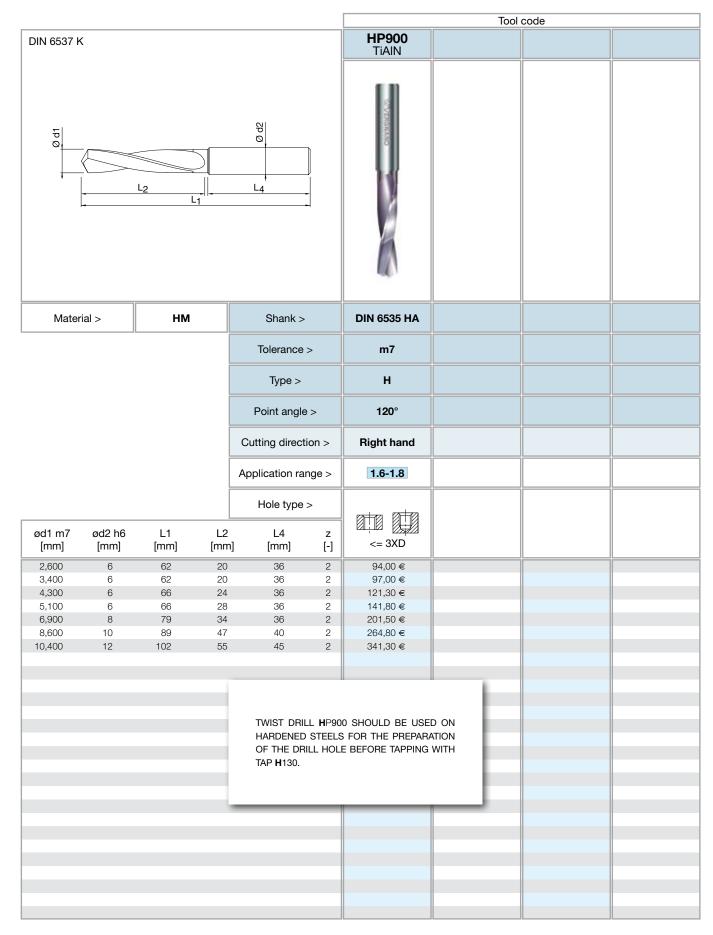
MACHINE COLD FORMING TAPS - With oil grooves and internal coolant

For blind and through holes - Solid carbide

ISO Metric coarse thread - DIN 13

MACHINE TAPS FOR CAST IRON - Straight flutes - Internal axial coolant

For blind and through holes - Solid carbide


ISO Metric fine thread - DIN 13

			ead - D		,					Tool	code	
DIN 3	74								HB45	HB45 TiAIN		
	0 001	L2		L1	Ø d2			7				
	Material	>		НМ		Tol	erance	>	6НХ	6НХ		
						Char	nfer foi	rm >	C / 2-3	C / 2-3		
						Applica	ation ra	ange >	3.1-2	4.3-4.4		
ød1	P	L1	L2	L3	ød2 h6	Hole type >						
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]					
M 12 14 16	1,5 1,5 1,5	100 100 100	22 22 22		9 11 12	7 9 9	4 4 4	10,5 12,5 14,5	332,00 € 399,50 € 437,30 €	398,50 € 479,50 € 524,80 €		

TWIST DRILL - Straight shank

For alloyed steels up to HRC 62 - Solid carbide

Applications

Carbide taps find numerous applications, both in the automotive and in the aeronautical industry. In the following case studies, the difference in toollife and in cutting speed can be seen between carbide taps and high speed steel taps.

Applications 1

Workpiece:	Brake caliper				
Material:	AISi7 M.G. 4.3	6	220		
Thread:	M10		and the second		
Hole type:	blind	0.0	37		
Depth [mm]:	25		- 3		
Depth:	Emulsion 10% Internal				
Machine:	CNC machine vertical				
Spindle:	Rigid, with collet				
		Tap HSSK TiAIN IKZ	Tap HM HB43 TiAIN IKZ		
		Vc = 25 m/min	Vc = 50 m/min		
		Tool life = 12.000 threads	Tool life = 100.000 threads		
	Tool life increase: +730% - (Cycle time reduction: -100%			

Applications 2

Workpiece:	Connecting rod
Material:	C70 S6 M.G. 1.3
Thread:	M8
Hole type:	blind
Depth [mm]:	16
Depth:	Oil Internal
Machine:	CNC machine vertical
Spindle:	Sincro, with collet

	Tap HSSK TiN IKZ	Tap HM HB80NR TiCN
	Vc = 15 m/min	Vc = 30 m/min
	Tool life = 3.000 threads	Tool life = 10.000 threads
Taal life increases (220% - Cuale time reduction) 100%		

Tool life increase: +230% - Cycle time reduction: -100%

Changes or printing errors regarding technical details do not justify any claims. We reserve the right to introduce changes regarding technical details, without prior notice. Complete or partial reproduction of this catalogue is not permitted without our prior permission.

F.Ili VERGNANO s.r.l. Corso Egidio Olia, 2 10023 CHIERI (TO) - Italy Tel. +39 011 942 35 23 Fax +39 011 942 54 26

www.vergnano.com info@vergnano.com